§ 177.1650

(f) Nonapplicability. The provisions of this section are not applicable to polystyrene and rubber-modified polystyrene used in food-packaging adhesives complying with §175.105 of this chapter.

§ 177.1650 Polysulfide polymerpolyepoxy resins.

Polysulfide polymer-polyepoxy resins may be safely used as the food-contact surface of articles intended for packaging, transporting, holding, or otherwise contacting dry food, in accordance with the following prescribed conditions:

- (a) Polysulfide polymer-polyepoxy resins are the reaction products of liquid polysulfide polymers and polyfunctional epoxide resins, cured with the aid of tri(dimethylaminomethyl) phenol, to which have been added certain optional substances to impart desired technological properties to the resins. Subject to any limitations prescribed in this section, the optional substances may include:
- (1) Substances generally recognized as safe in food and food packaging.
- (2) Substances the use of which is permitted under applicable regulations in this part, prior sanctions, or approvals.
- (3) Substances named in this subparagraph and further identified as required:

List of substances	Limitations
Bis(2-chloroethyl) formal. Bis(dichloropropyl) formal Butyl alcohol Carbon black (channel process).	Cross-linking agent. Solvent.
Chlorinated paraffins Epoxidized linseed oil. Epoxidized soybean oil.	Cross-linking agent.
Epoxy resins (as listed in § 175.300(b)(3)(viii)(a) of this chapter)	
Ethylene glycol monobutyl ether	Solvent.
Magnesium chloride. Methyl isobutyl ketone Naphthalene sulfonic acid-formalde-	Solvent.
hyde condensate, sodium salt. Sodium dibutyl naphthalene sulfonate.	Wetting agent.
Sodium hydrosulfide.	
Sodium polysulfide. $\beta, \beta', \gamma, \gamma'$ -Tetrachloro normal propylether.	Cross-linking agent.
Titanium dioxide. Toluene Trichloroethane	Solvent. Cross-linking agent. Do.
Urea-formaldehyde resins.	

List of substances	Limitations
Xylene	Solvent.

(b) The resins are used as the food-contact surface for dry food.

(c) An appropriate sample of the finished resin in the form in which it contacts food, when subjected to ASTM method D968-81, "Standard Test Methods for Abrasion Resistance of Organic Coatings by the Falling Abrasive Tester," which is incorporated by reference (copies may be obtained from the American Society for Testing Materials, 1916 Race St., Philadelphia, PA 19103, or may be examined at the Office of the Federal Register, 800 North Capitol Street, NW., suite 700, Washington, DC 20408), using No. 50 Emery abrasive in lieu of Ottawa sand, shall exhibit and abrasion coefficient of not less than 20 liters per mil of film thickness.

[42 FR 14572, Mar. 15, 1977, as amended at 49 FR 10110, Mar. 19, 1984]

§177.1655 Polysulfone resins.

Polysulfone resins identified in paragraph (a) of this section may be safely used as articles or components of articles intended for use in contact with food, in accordance with the following prescribed conditions:

- (a) For the purpose of this section, polysulfone resins are:
- Poly(oxy-p-phenylenesulfonyl-pphenyleneoxy-pphenyleneisopropylidene-*p*-phenylene) resins (CAS Reg. No. 25154-01-2) consisting of basic resins produced when disodium salt of isopropylidenediphenol is made to react with 4,4'-dichlorodiphenyl sulfone in such a way that the finished resins have a minimum number average molecular weight of 15,000, as determined osmotic bv pressure monochlorobenzene; or
- (2) 1,1'-Sulfonylbis[4-chlorobenzene] polymer with 4.4'-(1methylethylidene)bis[phenol] (min-92 and imum percent) 4.4'sulfonylbis[phenol] (maximum 8 percent) (CAS Reg. No. 88285-91-0) produced when a mixture of isopropylidenediphenol (minimum 92 percent) and 4,4'-sulfonylbis[phenol] (maximum 8 percent) is made to react with 4,4'-dichlorodiphenyl sulfone in

such a way that the finished resin has a minimum number average molecular weight of 26,000, as determined by osmotic pressure in dimethylformamide.

(b) The basic polysulfone resins identified in paragraph (a) of this section may contain optional adjuvant substances required in the production of such basic resins. The optional adjuvant substances required in the production of the basic polysulfone resins may include substances described in §174.5(d) of this chapter and the following:

List of substances	Limitations
Dimethyl sulfoxide	Not to exceed 50 parts per million as residual solvent in finished basic resin in paragraph (a)(1) of this section.
Monochlorobenzene	Not to exceed 500 parts per million as residual solvent in finished basic resin in paragraph (a)(1) of this section.
N-methyl-2- pyrrolidone.	Not to exceed 0.01 percent (100 parts per million) as residual solvent in finished basic resin in paragraph (a)(2) of this section.

(c) Polysulfone resins, when extracted at reflux temperatures for 6 hours with the solvents—distilled water, 50 percent (by volume) ethyl alcohol in distilled water, 3 percent acetic acid in distilled water, and nheptane, yield total extractives in each extracting solvent not to exceed 0.0078 milligram per square centimeter (0.05 milligram per square inch) of resin surface. Note: In testing the finished polysulfone resins, use a separate resin test sample for each required extracting solvent.

(d) Polysulfone resins intended for repeated use in contact with food may be used under conditions of use A through H in table 2 of §176.170(c) of this chapter. The resins intended for single-service food-contact use may be used only under condition of use H described in table 2 of §176.170(c) of this chapter.

[51 FR 882, Jan. 9, 1986; 51 FR 4165, Feb. 3, 1986; 61 FR 29475, June 11, 1996]

§ 177.1660 Poly (tetramethylene terephthalate).

Poly(tetramethylene terephthalate) (poly (oxytetramethyleneoxyterephthaloyl)) [Chemical Abstracts Service Registry No. 24968-12-5] identified in this section may be safely used as

articles or components of articles intended to contact food, in accordance with the following prescribed conditions:

(a) *Identity*. For the purpose of this section, poly (tetramethylene terephthalate) is the reaction product of dimethyl terephthalate with 1,4-butanediol to which may have been added certain optional substances to impart desired technological properties to the polymer.

Optional (b) adjuvant substances. Poly(tetramethylene terephthalate) identified in paragraph (a) of this section may contain optional adjuvant substances. The quantity of any optional adjuvant substance employed in the production of the polymer does not exceed the amount reasonably required to accomplish the intended technical or physical effect. Such adjuvants may include substances generally recognized as safe in food, substances used in accordance with prior sanction, and substances permitted under applicable regulations in this part.

(c) Specifications. (1) Inherent viscosity of a 0.50 percent solution of the polymer in phenol/tetrachloroethane (60/40 weight ratio) solvent is not less than 0.6 as determined using a Wagner viscometer (or equivalent) and calculated from the following equation:

Inherent viscosity =
$$\frac{\text{(natural logarithm of } N_r)}{(c)}$$

where:

 N_r =Ratio of flow time of the polymer solution to that of the solvent and c=polymer concentration of the test solution in grams per 100 milliliters.

- (2) Poly(tetramethylene terephthalate) in the finished form in which it is to contact food shall yield total extractives as follows:
- (i) Not to exceed 0.08 milligram per square inch of food contact surface when extracted for 2 hours at 250 $^{\circ}F$ with distilled water.
- (ii) Not to exceed 0.02 milligram per square inch of food contact surface when extracted for 2 hours at 150 $^{\circ}$ F with n-heptane.
- (iii) Not to exceed 0.04 milligram per square inch of food contact surface when extracted for 2 hours at 212 °F with 3 percent aqueous acetic acid.